Geometric computation of value set boundaries
نویسندگان
چکیده
In this paper a general algorithm to find the boundaries of value sets bounded by elliptic arcs is developed. This algorithm uses a generalized line-sweep search procedure to extract the value set boundary from a set of generalized polygons describing the image of the bounding set or the extrema1 segments of the plant. The advantage of this approach is that , when the uncertainty is affine, it preserves the geometric parameterizations of value set boundaries. The effectiveness of this procedure is illustrated in the computation of value sets of affine uncertain plants.
منابع مشابه
Solving Systems of Polynomial
Current geometric and solid modeling systems use semi-algebraic sets for deening the boundaries of solid objects, curves and surfaces, geometric constraints with mating relationship in a mechanical assembly, physical contacts between objects, collision detection. It turns out that performing many of the geometric operations on the solid boundaries or interacting with geometric constraints is re...
متن کاملA Hybrid 3D Colon Segmentation Method Using Modified Geometric Deformable Models
Introduction: Nowadays virtual colonoscopy has become a reliable and efficient method of detecting primary stages of colon cancer such as polyp detection. One of the most important and crucial stages of virtual colonoscopy is colon segmentation because an incorrect segmentation may lead to a misdiagnosis. Materials and Methods: In this work, a hybrid method based on Geometric Deformable Models...
متن کاملObjects with Broad Boundaries
Objects with broad boundaries are spatial objects, whose crisp boundaries are replaced by an area expressing the boundary’s uncertainty. There are two main interpretations for broad boundaries: (1) for positional uncertainty, the broad boundary represents the set of all possible positions among which the unknown boundary position is hidden; (2) for “fuzzy” boundaries, that is, boundaries that a...
متن کاملAn Optimality Criterion for Arithmetic of Complex Sets
Uncertainty of measuring complex-valued physical quantities can be described by complex sets. These sets can have complicated shapes, so we would like to nd a good approximating family of sets. Which approximating family is the best? We reduce the corresponding optimization problem to a geometric one: namely, we prove that, under some reasonable conditions, an optimal family must be shift-, rot...
متن کاملفاز هندسی سامانههای اپتومکانیکی
In this paper, with respect to the advantages of geometric phase in quantum computation, we calculate the geometric phase of the optomechanical systems. This research can be considered as an important step toward using the optomechanical systems in quantum computation with utilizing its geometric phase.
متن کامل